Voxel-Based Analysis of Fractional Anisotropy in Post-Stroke Apathy
نویسندگان
چکیده
OBJECTIVE To explore the structural basis of post-stroke apathy by using voxel-based analysis (VBA) of fractional anisotropy (FA) maps. METHODS We enrolled 54 consecutive patients with ischemic stroke during convalescence, and divided them into apathy (n = 31) and non-apathy (n = 23) groups. We obtained magnetic resonance images of their brains, including T1, T2 and DTI sequences. Age, sex, education level, Hamilton Depression Scale (HAMD) scores, Mini-Mental State Examination (MMSE) scores, National Institutes of Health Stroke Scale (NIHSS) scores, and infarct locations for the two groups were compared. Finally, to investigate the structural basis of post-stroke apathy, VBA of FA maps was performed in which we included the variables that a univariate analysis determined had P-values less than 0.20 as covariates. RESULTS HAMD (P = 0.01) and MMSE (P<0.01) scores differed significantly between the apathy and non-apathy groups. After controlling for age, education level, HAMD scores, and MMSE scores, significant FA reduction was detected in four clusters with peak voxels at the genu of the corpus callosum (X = -16, Y = 30, Z = 8), left anterior corona radiata (-22, 30, 10), splenium of the corpus callosum (-24, -56, 18), and right inferior frontal gyrus white matter (52, 24, 18), after family-wise error correction for multiple comparisons. CONCLUSIONS Post-stroke apathy is related to depression and cognitive decline. Damage to the genu of the corpus callosum, left anterior corona radiata, splenium of the corpus callosum, and white matter in the right inferior frontal gyrus may lead to apathy after ischemic stroke.
منابع مشابه
Op-brai150309 3803..3815
Small vessel disease is a stroke subtype characterized by pathology of the small perforating arteries, which supply the sub-cortical structures of the brain. Small vessel disease is associated with high rates of apathy and depression, thought to be caused by a disruption of white matter cortical-subcortical pathways important for emotion regulation. It provides an important biological model to ...
متن کاملDifferential relationships between apathy and depression with white matter microstructural changes and functional outcomes
Small vessel disease is a stroke subtype characterized by pathology of the small perforating arteries, which supply the sub-cortical structures of the brain. Small vessel disease is associated with high rates of apathy and depression, thought to be caused by a disruption of white matter cortical-subcortical pathways important for emotion regulation. It provides an important biological model to ...
متن کاملPossible Protective Effect of Regulatory T cells on White Matter Microstructural Abnormalities in Stroke Patients
Background: Despite advances in the understanding of stroke, therapeutic options for stroke are limited. Inflammatory mechanisms activated after brain ischemia are a key target of translational cerebrovascular research. The purpose of the present study was to investigate the existence of microstructure abnormalities in the white matter of stroke patients and their relationship to lymphocyte sub...
متن کاملWhite matter disease contributes to apathy and disinhibition in behavioral variant frontotemporal dementia.
OBJECTIVE To relate changes in fractional anisotropy associated with behavioral variant frontotemporal dementia to measures of apathy and disinhibition. BACKGROUND Apathy and disinhibition are the 2 most common behavioral features of behavioral variant frontotemporal dementia, and these symptoms are associated with accelerated patient decline and caregiver stress. However, little is known abo...
متن کاملOp-brai140393 1..15
Chronic visual neglect prevents brain-damaged patients from returning to an independent and active life. Detecting predictors of persistent neglect as early as possible after the stroke is therefore crucial to plan the relevant interventions. Neglect signs do not only depend on focal brain lesions, but also on dysfunction of large-scale brain networks connected by white matter bundles. We explo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015